保护模式

更新时间:2022-08-25 11:04

保护模式,是一种80286系列和之后的x86兼容CPU操作模式。保护模式有一些新的特色,设计用来增强多工和系统稳定度,像是 内存保护,分页 系统,以及硬件支援的 虚拟内存。大部分的现今 x86 操作系统 都在保护模式下运行,包含 Linux、FreeBSD、以及 微软 Windows 2.0 和之后版本。

概况

保护模式与实模式相对应。在80286以前,CPU只有实时模式,地址总线有20位,而内存地址是16位,也就是最多能够访问2^20=1M的内存空间。在80286及以后,内存地址改为16位或32位,至少可以访问到2^32=4G的内存空间。但为了保证后续的CPU能够运行旧的CPU,只能保持向下兼容。因此,80286及以后的CPU首先进入实模式,然后通过切换机制再进入到保护模式。

实模式

那么什么是实模式呢?CPU复位(reset)或加电(power on)的时候以实模式启动,处理器以实模式工作。在实模式下,内存寻址方式和8086相同,由16位段寄存器的内容乘以16(10H)当做段基地址,加上16位偏移地址形成20位的物理地址,最大寻址空间1MB,最大分段64KB。可以使用32位指令。32位的x86 CPU用做高速的8086。在实模式下,所有的段都是可以读、写和可执行的。

保护模式与实模式相比,主要是两个差别:一是提供了段间的保护机制,防止程序间胡乱访问地址带来的问题,二是访问的内存空间变大,见前面的描述。

在8086/8088时代,处理器只存在一种操作模式(Operation Mode),当时由于不存在其它操作模式,因此这种模式也没有被命名。自从80286到80386开始,处理器增加了另外两种操作模式——保护模式和系统管理模式SMM(System Management Mode),因此,8086/8088的模式被命名为实地址模式RM(Real-address Mode)。

保护模式是处理器的本机模式,在这种模式下,处理器支持所有的指令和所有的体系结构特性,提供最高的性能和兼容性。对于所有的新型应用程序和操作系统来说,建议都使用这种模式。为了保证PM的兼容性,处理器允许在受保护的,多任务的环境下执行RM程序。这个特性被称做虚拟8086模式(Virtual -8086 Mode),尽管它并不是一个真正的处理器模式。Virtual-8086模式实际上是一个PM的属性,任何任务都可以使用它。

RM提供了Intel 8086处理器的编程环境,另外有一些扩展(比如切换到PM或SMM的能力)。当主机被Power-up或Reset后,处理器处于RM下。

SMM是一个对所有Intel处理器都统一的标准体系结构特性。出现于Intel386 SL芯片。这个模式为OS实现平台指定的功能(比如电源管理或系统安全)提供了一种透明的机制。当外部的SMM interrupt pin(SMI#)被激活或者从APIC(Advanced Programming Interrupt Controller)收到一个SMI,处理器将进入SMM。在SMM下,当保存当前正在运行程序的整个上下文(Context)时,处理器切换到一个分离的地址空间。然后SMM指定的代码或许被透明的执行。当从SMM返回时,处理器将回到被系统管理中断之前的状态。

由于机器在Power-up或Reset之后,处理器处于RM状态,而对于Intel 80386以及其后的芯片,只有使用PM才能发挥出最大的作用。所以我们就面临着一个从RM切换到PM的问题。

本文不讨论SMM,本节的重点集中于在Booting阶段如何从RM切换到PM,这里不会过多的讨论PM的细节,因为《Intel Architecture Software Developer’s Manual Volume 3: System Programming》中有非常详尽和准确的介绍。

GDT

全局描述表(GDT Global Descriptor Table):在保护模式下,一个重要的必不可少的数据结构就是它。

为什么要有GDT?我们首先考虑一下在实时模式下的编程模型:

在实时模式下,我们对一个内存地址的访问是通过Segment:Offset的方式来进行的,其中Segment是一个段的Base Address,一个Segment的最大长度是64 KB,这是16-bit系统所能表示的最大长度。而Offset则是相对于此Segment Base Address的偏移量。Base Address+Offset就是一个内存绝对地址。由此,我们可以看出,一个段具备两个因素:Base Address和Limit(段的最大长度),而对一个内存地址的访问,则是需要指出:使用哪个段?以及相对于这个段Base Address的Offset,这个Offset应该小于此段的Limit。当然对于16-bit系统,Limit不要指定,默认为最大长度64KB,而 16-bit的Offset也永远不可能大于此Limit。我们在实际编程的时候,使用16-bit段寄存器CS(Code Segment),DS(Data Segment),SS(Stack Segment)来指定Segment,CPU将段寄存器中的数值向左偏移4-bit,放到20-bit的地址线上就成为20-bit的Base Address。

到了保护模式,内存的管理模式分为两种,段模式和页模式,其中页模式也是基于段模式的。也就是说,保护模式的内存管理模式事实上是:纯段模式和段页式。进一步说,段模式是必不可少的,而页模式则是可选的——如果使用页模式,则是段页式;否则这是纯段模式。

既然是这样,我们就先不去考虑页模式。对于段模式来讲,访问一个内存地址仍然使用Segment:Offset的方式,这是很自然的。由于保护模式运行在32位系统上,那么Segment的两个因素:Base Address和Limit也都是32位的。IA-32允许将一个段的Base Address设为32-bit所能表示的任何值(Limit则可以被设为32-bit所能表示的,以2^12为倍数的任何值),而不象实时模式下,一个段的Base Address只能是16的倍数(因为其低4-bit是通过左移运算得来的,只能为0,从而达到使用16-bit段寄存器表示20-bit Base Address的目的),而一个段的Limit只能为固定值64 KB。另外,保护模式,顾名思义,又为段模式提供了保护机制,也就说一个段的描述符需要规定对自身的访问权限(Access)。所以,在保护模式下,对一个段的描述则包括3方面因素:[Base Address, Limit, Access],它们加在一起被放在一个64-bit长的数据结构中,被称为段描述符。这种情况下,如果我们直接通过一个64-bit段描述符来引用一个段的时候,就必须使用一个64-bit长的段寄存器装入这个段描述符。但Intel为了保持向后兼容,将段寄存器仍然规定为16-bit(尽管每个段寄存器事实上有一个64-bit长的不可见部分,但对于程序员来说,段寄存器就是16-bit的),那么很明显,我们无法通过16-bit长度的段寄存器来直接引用64-bit的段描述符。怎么办?

解决的方法就是把这些长度为64-bit的段描述符放入一个数组中,而将段寄存器中的值作为下标索引来间接引用(事实上,是将段寄存器中的高13-bit的内容作为索引)。这个全局的数组就是GDT。事实上,在GDT中存放的不仅仅是段描述符,还有其它描述符,它们都是64-bit长,我们随后再讨论。

GDT可以被放在内存的任何位置,那么当程序员通过段寄存器来引用一个段描述符时,CPU必须知道GDT的入口,也就是基地址放在哪里,所以Intel的设计者门提供了一个寄存器GDTR用来存放GDT的入口地址,程序员将GDT设定在内存中某个位置之后,可以通过LGDT指令将GDT的入口地址装入此寄存器,从此以后,CPU就根据此寄存器中的内容作为GDT的入口来访问GDT了。

GDT是保护模式所必须的数据结构,也是唯一的——不应该,也不可能有多个。另外,正象它的名字(Global Descriptor Table)所揭示的,它是全局可见的,对任何一个任务而言都是这样。

除了GDT之外,IA-32还允许程序员构建与GDT类似的数据结构,它们被称作LDT(Local Descriptor Table),但与GDT不同的是,LDT在系统中可以存在多个,并且从LDT的名字可以得知,LDT不是全局可见的,它们只对引用它们的任务可见,每个任务最多可以拥有一个LDT。另外,每一个LDT自身作为一个段存在,它们的段描述符被放在GDT中。

IA-32为LDT的入口地址也提供了一个寄存器LDTR,因为在任何时刻只能有一个任务在运行,所以LDT寄存器全局也只需要有一个。如果一个任务拥有自身的LDT,那么当它需要引用自身的LDT时,它需要通过LLDT将其LDT的段描述符装入此寄存器。LLDT指令与LGDT指令不同的是,LGDT指令的操作数是一个32-bit的内存地址,这个内存地址处存放的是一个32-bit GDT的入口地址,以及16-bit的GDT Limit。而LLDT指令的操作数是一个16-bit的选择子,这个选择子主要内容是:被装入的LDT的段描述符在GDT中的索引值——这一点和刚才所讨论的通过段寄存器引用段的模式是一样的。

LDT

LDT只是一个可选的数据结构,你完全可以不用它。使用它或许可以带来一些方便性,但同时也带来复杂性,如果你想让你的OS内核保持简洁性,以及可移植性,则最好不要使用它。

引用GDT和LDT中的段描述符所描述的段,是通过一个16-bit的数据结构来实现的,这个数据结构叫做Segment Selector——段选择子。它的高13位作为被引用的段描述符在GDT/LDT中的下标索引,bit 2用来指定被引用段描述符被放在GDT中还是到LDT中,bit 0和bit 1是RPL——请求特权等级,被用来做保护目的,我们这里不详细讨论它。

前面所讨论的装入段寄存器中作为GDT/LDT索引的就是Segment Selector,当需要引用一个内存地址时,使用的仍然是Segment:Offset模式,具体操作是:在相应的段寄存器装入Segment Selector,按照这个Segment Selector可以到GDT或LDT中找到相应的Segment Descriptor,这个Segment Descriptor中记录了此段的Base Address,然后加上Offset,就得到了最后的内存地址。

安装描述

由上一节的讨论得知,GDT是保护模式所必须的数据结构,那么我们在进入保护模式之前,必须设定好GDT,并通过LGDT将其装入相应的寄存器。

尽管GDT允许被放在内存的任何位置,但由于GDT中的元素——描述符——都是64-bit长,也就是说都是8个字节,所以为了让CPU对GDT的访问速度达到最快,我们应该将GDT的入口地址放在以8个字节对齐,也就是说是8的倍数的地址位置。

GDT中第一个描述符必须是一个空描述符,也就是它的内容应该全部为0。如果引用这个描述符进行内存访问,则是产生General Protection异常。

如果一个OS不使用虚拟内存,段模式会是一个不错的选择。但现代OS没有不使用虚拟内存的,而实现虚拟内存的比较方便和有效的内存管理方式是页式管理。但是在IA-32上如果我们想使用页式管理,我们只能使用段页式——没有方法可以完全禁止段模式。但我们可以尽力让段的效果降低的最小。

IA-32提供了一种被称作“Basic Flat Model”的分段模式可以达到这种效果。这种模式要求在GDT中至少要定义两个段描述符,一个用来引用Data Segment,另一个用来引用Code Segment。这2个Segment都包含整个线性空间,即Segment Limit = 4 GB,即使实际的物理内存远没有那么多,但这个空间定义是为了将来由页式管理来实现虚拟内存。

在这里,我们只是处于启动阶段,所以我们只需要初步设置一下GDT,等真正进入保护模式,启动了OS Kernel之后,具体OS打算如何设置GDT,使用何种内存管理模式,由Kernel自身来设置,启动只需要给Kernel的数据段和代码段设置全部线性空间就可以了。

段描述符的格式如下图所示:

具体到代码段数据段,它们的格式如下图所示:

# Descriptor tables

gdt:

.word 0, 0, 0, 0 # dummy

.word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)

.word 0 # base address = 0

.word 0x9A00 # code read/exec

.word 0x00CF # granularity = 4096, 386

# (+5th nibble of limit)

.word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)

.word 0 # base address = 0

.word 0x9200 # data read/write

.word 0x00CF # granularity = 4096, 386

# (+5th nibble of limit)

加载描述

设置好GDT之后,我们需要通过LGDT指令将设定的gdt的入口地址和gdt表的大小装入GDTR寄存器。

GDTR寄存器包括两部分:32-bit的线性基地址,以及16-bit的GDT大小(以字节为单位)。需要注意的是,对于32-bit线性基地址,必须是32-bit绝对物理地址,而不是相对于某个段的偏移量。而我们在启动阶段,在进入保护模式之前,我们CS和DS设置很可能不是0,所以我们必须计算出gdt的绝对物理地址。

为了执行LGDT指令,你需要把这两部分内容放在内存的某个位置,然后将这个位置的内存地址作为操作数传递给LGDT指令。然后LGDT指令会自动将保存在这个位置的这两部分值装入GDTR寄存器。

# 这是存放GDTR所需的两部分内容的位置

gdt_48:

.word 0x8000 # gdt limit=2048,

# 256 GDT entries

.word 0, 0 # gdt base (filled in later)

# 下面这段代码用来计算GDT的32-bit线性地址,并将其装入GDTR寄存器。

xorl %eax, %eax # Compute gdt_base

movw %ds, %ax # (Convert %ds:gdt to a linear ptr)

shll 4, %eax

addl , %eax

movl %eax, (gdt_48+2)

lgdt gdt_48 # load gdt with whatever is appropriate

其他东西

在进入保护模式之前,除了需要设置和装入GDT之外,还需要做如下一些事情:

屏蔽所有可屏蔽中断;

装入IDTR;中文全称:中断描述表寄存器

所有协处理器被正确的复位。

由于在实时模式和保护模式下的中断处理机制有一些不同,所以在进入保护模式之前,务必禁止所有可屏蔽中断,这可以通过下面两种方法之一:

使用CLI指令;

对8259A可编程中断控制器编程以屏蔽所有中断。

即使当我们进入保护模式之后,也不能马上将中断打开,这时因为我们必须在OS Kernel中对相关的保护模式中断处理所需的数据结构正确的初始化之后,才能打开中断,否则会产生处理器异常。

在实时模式下,中断处理使用IVT(Interrupt Vector Table),在保护模式下,中断处理使用IDT(Interrupt Descriptor Table),所以,我们必须在进保护模式之前设置IDTR。

IDTR的格式和GDTR相同,IDTR的装入方式和GDTR也相同。由于IDT中相关的中断处理程序需要让OS Kernel来设定,所以在启动阶段,我们只需要将IDTR中IDT的基地址和Size都设为0就可以了,随后,等进入保护模式之后,由OS Kernel来真正设置它。

关于中断机制和中断处理,请参考 Interrupt & Exception ,这里不再赘述。

#

# 这是存放IDTR所需的两部分内容的位置

#

idt_48:

.word 0 # idt limit = 0

.word 0, 0 # idt base = 0L

# 对于IDTR的处理,只需要这一条指令即可

lidt idt_48 # load idt with 0,0

#

# 通过设置8259A PIC,屏蔽所有可屏蔽中断

#

movb xFF, %al # mask all interrupts for now

outb %al, xA1

call delay

movb xFB, %al # mask all irq's but irq2 which

outb %al, x21 # is cascaded

# 保证所有的协处理都被正确的Reset

xorw %ax, %ax

outb %al, xf0

call delay

outb %al, xf1

call delay

# Delay is needed after doing I/O

delay:

outb %al,x80

ret

5. Let's Go

好,一切准备就绪

进入保护模式,还是进入实时模式,完全靠CR0寄存器的PE标志位来控制:如果PE=1,则CPU切换到PM,否则,则进入RM。

设置CR0-PE位的方法有两种:

第一种

第一种是80286所使用的LMSW指令,后来的80386及更高型号的CPU为了保持向后兼容,都保留了这个指令。这个指令只能影响最低的4 bit,即PE,MP,EM和TS,对其它的没有影响。

#

#通过LMSW指令进入保护模式

#

movw $0x0001, %ax # protected mode (PE) bit

lmsw %ax # This is it!

第二种

第二种是Intel所建议的在80386以后的CPU上使用的进入PM的方式,即通过移动MOV指令。MOV指令可以设置CR0寄存器的所有域的值。

#

#通过MOV指令进入保护模式

#

movl %cr0, %eax

xorb $0x01, %al # set PE = 1

movl %eax, %cr0 # go!!

现在已经进入保护模式了。

启动内核

我们已经从实时模式进入保护模式,现在我们马上就要启动OS Kernel了。

OS Kernel运行在32-bit段模式,而当前我们却仍然处于16-bit段模式。这是怎么回事?为了了解这个问题,我们需要仔细探讨一下IA-32的段模式的实现方法。

IA-32共提供了6个16-bit段寄存器:CS,DS,SS,ES,FS,GS。但事实上,这16-bit只是对程序员可见的部分,但每个寄存器仍然包括64-bit的不可见部分。

可见部分是为了供程序员装载段寄存器,但一旦装载完成,CPU真正使用的就只是不可见部分,可见部分就完全没有用了。

不可见部分存放的内容是什么?具体格式我没有看到相关资料,但可以确定的是隐藏部分的内容和段描述符的内容是一致的(请参考段描述的格式),只不过格式可能不完全相同。但格式对我们理解这一点并不重要,因为程序员不可能能够直接操作它。

我们以CS寄存器为例,对于其它寄存器也是一样的:

在保护模式下,当我们执行一个装载CS寄存器的指令的时候,段选择子(Segment Selector)被装入CS寄存器的可见部分,同时CPU根据此选择子到相应的描述符表中(GDT或LDT)找到相应的段描述符并将其内容装载入CS寄存器的不可见部分。随后CPU当需要通过CS的内容进行地址运算的时候,也仅仅引用不可见部分。

从上面的描述可以看出,事实上CPU在引用段寄存器的内容进行地址运算时,实时模式和保护模式是一致的。另外,也明白了为什么我们在实时模式下设置的段寄存器的内容到了保护模式下仍然引用的是16-bit段。

那么我们如何将CS设置为引用32-bit段?方法就像我们前面所讨论的,使用jmp或call指令,引用一个段选择子,到GDT中装载一个引用32-bit段的段描述符。

需要注意的是,如果CS寄存器的内容指出当前是一个16-bit段,那么当前的地址模式也就是16-bit地址模式,这与你当前是出于实时模式还是保护模式无关。而我们装载32-bit段的jmp指令或call指令必须使用的是32-bit地址模式。而我们当前的boot部分代码是16-bit代码,所以我们必须在此jmp/call指令前加上地址转换前缀代码66h。

下面的例子就是使用jmp指令装入32-bit段。Jmpi指令的含义是段间跳转,其Opcode为Eah,其格式为:jmpi Offset, Segment Selector。

# 由于当前的代码是16-bit代码,而我们要执行32-bit地址模式的指令,指令前

# 需要有地址模式切换前缀66h,如果我们直接写jmp指令,由编译器来生成代码

# 的话,是无法作到这一点的,所以我们直接写相关数据。

.byte 0x66, 0xea # prefix + jmpi-opcode

.long 0x1000 # Offset

.word __KERNEL_CS # CS segment selector

上面的代码相当于32-bit指令:

jmpi 0x1000,__KERNEL_CS

如果__KERNEL_CS段选择子所引用的段描述符设置的段空间为线形地址[0,4 GB],而我们将OS Kernel放在物理地址1000h,那么此jmpi指令就跳转到OS Kernel的入口处,并开始执行它。

此时,启动阶段结束,OS正式开始运行!

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}